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Onset of collective oscillation in chemical turbulence under global feedback
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Preceding the complete suppression of chemical turbulence by means of global feedback, a different uni-
versal type of transition, which is characterized by the emergence of small-amplitude collective oscillation with
strong turbulent background, is shown to occur at much weaker feedback intensity. We illustrate this fact
numerically in combination with a phenomenological argument based on the complex Ginzburg-Landau equa-
tion with global feedback.
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I INTRODUCTION GW=W-+(1+ic;)d2W— (1+ic,)|WPW+uW, (1)
Chemical turbulence in oscillatory reaction-diffusion sys- _ 1L

tems can be completely suppressed by means of global feed- W(t)= Ej W(t,x)dx, i)

back[1-3]. Theoretically, this fact was found in the complex 0

Ginzburg-Landau equatidi,2], i.e., the normal form of 0s-  \yherewis a complex field, and is the system size which is
cillatory reaction-diffusion systems near the supercrltlcalsupposed to be sufficiently large. The intengityf the glo-
Hopf bifurcation point[4]. Recent experiments on catalytic p5| feedback is generally a complex number. It is known,
CO oxidation on Pt surface demonstrated the same fact, r'erowever, that a suitable tuning of the delay time in the feed-
vealing also a variety of wave patterns caused by the effecsack in the original system can control the phase of this
of global delayed feedbadB,5]. A theoretical model for this  parameter[1,2]. For the sake of simplicity, therefore, we
reaction system reproduced similar behayi]. shall confine our present analysis to the case ofgeathich

In the present paper, we show that yet another transitiogorresponds to the situation where the delay time in the feed-
of universal nature can occur at a certain feedback intensitgack is fixed at a certain value but the feedback intensity is
which is much weaker than the critical intensity associatedgliowed to vary. A brief comment will be made on the case of
with the complete suppression of turbulence. The transitiogomplex in the final section.
is characterized by the emergence of small-amplitude collec- \we first consider the system without feedbagk=(0),
tive oscillation out of the strongly turbulent medium without j e, the usual one-dimensional CGL8]. As is well known,
long-range phase coherence. When the collective oscillatiopniform oscillations are linearly unstable and turbulence de-

appeared, the system remains strongly turbulent, while thgelops when the Benjamin-Feir instability condition
effective damping rate of the uniform modiee., the mean

field) shows a change of sign from positive to negative. 1+c¢4Cc,<0 (3
Thus, the transition is interpreted as a consequence of a com-
plete cancellation of the effective damping of the mean fields satisfied. In what follows, we will fix the parameters
with the effect of its growth produced by the global feed-andc, asc,=2.0 andc,= — 2.0 so that the system may stay
back. well within the turbulent regime. We confirmed that under
In Sec. Il, we start with the complex Ginzburg-Landau this condition no collective oscillation exists, i.8Y is ran-
equation(CGL) with global feedback. Then we derive phe- domly fluctuating on a “microscopic” scale around the zero
nomenologically a nonlinear Langevin equation governingvalue without perceptible systematic motion. The core of our
the mean field in the form of a noisy Stuart-Landau equatiorargument developed below depends little on the choice of
(SL). In order to clarify the nature of the transition of our parameter values as far as the conditi@nis well satisfied.
concern, some numerical results for the one- and two- It is known that if the turbulence is sufficiently strong,
dimensional CGL will be compared in Secs. lll and 1V, re- which is actually the case under the above parameter condi-
spectively, with analytical results obtained from the noisytion, the system exhibits extensive chaos characterized by the
SL. Concluding remarks will be given in the final section. property[9]

DL, (4)
Il. LANGEVIN EQUATION FOR TURBULENT CGL AS AN . . . . . .
EFFECTIVE EQUATION FOR THE MEAN FIELD where_Df is the Lyapunc_)v_dlmensmn of the hlgh—dlm(_ansmnal
chaotic attractor describing the turbulence. Extensive chaos
One-dimensional complex Ginzburg-Landau equationmplies that the system can be imagined as composed of a
with global feedback is given bjl,2] large number of cells of equal size such that the fluctuations
of some variables associated with the individual cells about
their mean value are statistically independent from cell to
*Electronic address: kawamura@ton.scphys.kyoto-u.ac.jp cell. Thus, the fluctuations of a macrovariable, i.e., a variable
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o]

w= > Wl (8)

k=—o

whereq,=27k/L (k is an integer, and the Fourier ampli-
tudes are defined by

In|C()|

S N
Wk=Efo We dkgx. 9)

The uniform amplitud&V,, which is identical with the mean
FIG. 1. Numerically observed exponential decay of the time-field W by definition, obeys the equation

correlation function of the mean field in semilogarithmic scales.

The effective damping coefficieng, i.e., the mean tangerithe - ~ ] -~ o~ o~ ~

broken ling of the curve with the initial transient excluded, is esti- Wo=Wo—(1+icp) > Wie, Wi, Wik, #Wo . (10)

mated to be 0.22. The system sizeNis- 200 000. kikz

. . . ) One may wish to obtain an equation for the mean field in a
given by a simple sum of cell variables over the entire sys¢josed form, which would be a stochastic equation of the
tem, are expected to obey the central limit theorem. In parpgnlinear Langevin type. However, deriving such an equa-
ticular, in the_absence of long-range order, the characteristigon would be a formidable statistical mechanical problem,
amplitude ofW will scale like 1A/L for large system size. If so that in the present paper we will content ourselves by
we represent our continuous oscillatory medium with a longsimply assuming phenomenologically that the effective ex-
array of N oscillators with sufficiently small but fixed sepa- ponential decay of the mean field as is seen in Fig. 1 is a
ration between neighboring oscillators, which we actually doresult of renormalization of the linear coefficient in E¢0)
in numerical simulations to be described below, we expecby the nonlinear mode-coupling term. If we can neglect non-
asymptotically the property Markovian effects, the result of such renormalization will

generally take the form of a nonlinear Langevin equation

_ 1 1 . _
W=g 2 Wj=O<J—N>, 5 W=[(—7y)+io]W+MW)+f(1), (12)

: . . . _ where a nonlinear terW(WD with unknown specific form
whereW; is the gomplex amplitude of thith ‘?Sc'llatqrf has been included, anf{t) represents random force with
the array. The simple nature of the extensive variable yanishing mean.

mentioned above also implies that its time-correlation func-  The analysis of Eq(11) developed in the following sec-

tion defined by tion is based on the simplifying assumption thét) is white
Gaussian with the only nonvanishing second moment given
_ _ 1 (T b
C(t)=(W*(0)W(t))= lim Tf W*(s)W(s+t)ds (6) y

Toe 'S0 (FOF* (1)) =4T 8(t—t"). (12)

obeys a simple exponential decay law for latger The Gaussian nature of the random force seems to hold due
o to the aforementioned extensive nature\Wf The white-

C(t)ce™ . (7 noise assumption also seems valid because we are particu-

larly concerned with the situation near the transition point

The effective damping coefficieny is a quantity which  where the characteristic time scaleWfbecomes very long.
could only be determined from the statistical mechanics ofy/e should also note that the damping coefficigritas been
turbulent fluctuations which is still far from being estab- assumed to be unchanged when the g|oba| feedback is intro-
lished. The above decay law is confirmed from our numericaljyced, which is actually the property confirmed by our nu-
simulation. Figure 1 shows numerically calcula@€t) from  merical experiments at least for real Our final remark is
which the exponential law witly=0.22 is confirmed except that in the above argument about Efjl) we did not explic-

for some initial transient. In this numerical simulation, and |n|'[|y refer to spatia| dimension. Therefore, there seems to be

all numerical simulations which follow, we applied an ex- no reason why Eq(11) should not be applied to systems of
plicit Euler integration scheme with a constant time stdp  two or higher dimensions.

<0.01 and a fixed grid siz&Ax=0.5, adopting periodic Equation(11) tells that a transition occurs when the global
boundary conditions. The system sikeused ranges from feedback intensity. becomes equal to the effective damping
4000 to 200 000. coefficienty of the mean filed. We denote this valueofas

We now introduce global feedback and study its effects ory, . or
the dynamics of the mean field. Let the complex amplitude
be decomposed into Fourier series as M= Y- (13
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FIG. 2. Long-time averages of the mean field amplitGdeas a . . L

function of the feedback intensity over a wide range of:. The FIG. 4. Trajectories of the mean field in the complex plane for

dotted line corresponds to uniform oscillations. The system size ié‘zo'l and,u=0.$. The mean field is fluctgatlng around the origin
N=10 000. when x=0.1, while it forms a closed orbit with small amplitude

fluctuations whernu=0.3. The fluctuations come from the finite-
ness of the system size. The system sizN 4540 000.
Figure 2 shows numerically obtained long-time averages of
the mean field amplitude, denoted(@$, as a function of the  metry of our system and the smallness in amplitude of the
feedback intensity. over a wide range ofi. Although not  collective oscillation near its onset, the nonlinear effects
very clear from these data, there is an indication of transitiow(w) in Eq. (11) will be dominated by a cubic term. Then

from vanishing to nonvanishing) at some value ok much 6 mean field obeys a noisy Stuart-Landau equation
smaller than those giving rise to a hysteresis between turbu-

lent and nonturbulent uniform states. In fact, the whole
analysis in the rest of this paper is devoted to finding out

unambiguous ev_|denc¢ fqr the existence of a ransition nere the coefficientg., w, 7, anda are real and depend
through a closer investigation of small+egion.

In Fig. 3, two phase portraits in the complex amp“tudegenerally onc; and c,. Since the above equation can be
plane each obtained for=0.1 (weaker feedbadkand s handled analytically, it would be interesting to compare some

. . of the results from its analysis with our direct numerical

e s as s of . Smuaons on Eq(1) and {5 two-dmensiona exensin
. i . which are the subjects of Secs. Ill and 1V, respectively.

cal oscillators looks almost isotropic for the case wf

=0.1, implying the absence of collective oscillations, such

symmetry is obviously lost whenp = 0.3, implying the exis- lll. PREDICTED CRITICAL BEHAVIOR AND

tence of collective oscillations. Qualitative difference be- COMPARISON WITH NUMERICAL RESULTS

where a trajectory of the mean field over a long time at eaclihe Fokker-Planck equation of the following foirh0, 11]:
value of u is displayed. It is clear that when the feedback is

weak the mean field is nonoscillatory, simply fluctuating ¢ 19 ) A d
(presumably due to the finite-size effects described above EP(HM): T [—(m—pro+gr ]P+Fra—rP
around the origin, whereas for stronger feedback the same

W=[ (= o) +iw]W—(n+ia)|W2W+F(1), (14

guantity clearly exhibits a closed orbit with some amplitude 92
fluctuation again due to the finite-size effects. Thus, if there +(—w+ arz)%PJr - P/ (15
is a transition somewhere between thesealues, it is pre- r=o¢

sumably characterized by a noisy Hopf bifurcation.
The nonlinear Langevin equatiofil) actually predicts
the occurrence of a noisy Hopf bifurcation. From the sym-

Here P(r, ¢,t) is the probability density for the amplitude
and the phasep of the mean field at tim¢. The above
equation admits a stationary solution independern given
by

(@ 2 (b) 2

_ 2
Pst(r)zexp{—%(rz—MTMc> } (16)

Various moments of defined by

ImW
ImW

P 2 a9 0 1 2 J’ r"Pg(r)rdr
ReW ReW
(rM=—3 : (17)
FIG. 3. Phase portraits fgr=0.1 (a) and »=0.3 (b) at a given f P(r)rdr
time. The system size =40 000. 0
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FIG. 5. (r)? vs u (@, N"X{(8r)?) "1 vs u (b). The open circles _ _

and the solid lines are the numerical data and the theoretical curves, F!G- 6-(r) vs u for some different values df (a). Rescaling of
respectively. In each aB) and(b), a suitable scale factor is used as the data in@) according to the finite-size scaling given by EB2)
an adjustable parameter to achieve a good fitting between the theoRfoduces a universal curve independeniofb).
and numerical experiments. The system sizB #5200 000.

whereD is a constant independent Wf One may thus write
and those of the fluctuatiodr=r—(r) can be calculated the stationary distribution in the form
[12]. In particular, in the limit of weak random force, the

mean field amplitudér) near the transition is found to de- N7 e)2
end onu— u as = ——|r?-—
p = e Ps(r) exI{ 7D (r 77) : (21
Alp—pd™ (> po)
(ry= 0 (u< o) (18 wheree = u— u.. Applying the finite-size scaling law devel-
c/»

oped in Ref[13] to the average amplitude of the mean field,

whereA is a constant. Similarly, the mean field fluctuation we obtain a scaling form

6r)?) is given b

(enoiso g (r)y=N"Y4F(eN¥?), (22)
((8r) %)l w— e 7, (19
whereF is a function(called the scaling functiordepending

which holds foru= u.. Itis clear that the critical exponents on N ande only throughe N2, Equation(22) is a generali-
associated witiir) and((sr)?) obey the classical law or the zation of Eq.(18). Numerically calculatedr) for variouse
mean field theory, reflecting the fact that the transition isand N confirms this scaling law. Figure(® shows the de-
caused by the applied mean field and not by the developmefiendence of the long-time average of the mean field ampli-
of local order to a macroscopic scale. Still the transition is intude on feedback intensity for some different valueslofs
some sense statistical in nature unlike bifurcations in detelis seen from Fig. @), all these data come to lie on an iden-
ministic dynamical systems. This is because the loss of longtical universal curve after the rescalings(oj ande by N4
range order is solely due to turbulent fluctuations, so that andN'/?, respectively. In this way, the finite-size scaling law
full theoretical understanding of the transition phenomenon22) is confirmed, providing unmistakable evidence for a
would be impossible without statistical mechanics of chemiphase transition.
cal turbulence.

Long-time averages of and (6r)? were obtained as a
function of the feedback intensity from numerical simulation IV. TWO-DIMENSIONAL CASE
of Egs. (1) and (2) with N=200000, and the results are
shown in Figs. &) and 3b), respectively. By assuming that
the long-time averages are identical with ensemble average
these numerical data were fitted with the theoretical curve
given by Egs(18) and(19), respectively, where a scale fac-
tor is used as the only adjustable parameter. Note ghas
not an adjustable parameter, but is a constant given by E
(13.

In obtaining Eq.(18) for the mean field amplitude, we
considered the limit of weak random force. Let our argumen

be generalized to include the dependencérpfon the noise though the corresponding value @f is considerably smaller

intensity as well as onu—uc. Because the origin of the than that of the one-dimensional case under the same param-

random force driving the mean field is the finiteness of theeter condition. Figure 7 summarizes numerical results for

Egitznsost'ﬁg’Sthseter;?';ezémgrns'ty should be inversely pmpor}?ariqus:a andN, exhibited in a similar.manner to Fig(l®,

Y : i.e., in the form ofryN* vs e N2 for different values oN.
These data form almost an identical curve again, which we
take as evidence for a transition similar to that in one-

dimensional systems.

The one-dimensional reaction-diffusion systems which we
have numerically studied in Secs. Il and Ill are not very
raalistic. Especially, surface chemical reactions, such as cata-
ﬁ/tic CO oxidation on Pt, occur in two dimensions. As men-
tioned in the foregoing sections, the transition of our concern
is the mean field type, so that the nature of the transition is
%‘xpected to be the same as that in one-dimensional systems.
We carried out numerical simulations on the two-
dimensional complex Ginzburg-Landau equation with global
ﬁ‘eedback, and obtained a clear indication of transition, al-

D
F_N’ (20
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9 - - this transition obey the mean field theory because the origin
N=300x300 - of cooperativity is nothing but the mean field produced by
N=400x400 - o . . )
N=600x600 = R the global feedback. This also gives the reason why spatial

T 61 f“ dimension one is sufficient for giving rise to the transition.
% e We also confirmed that the two-dimensional complex
v 3 & Ginzburg-Landau equation with global feedback which is
& more realistic also exhibits a transition of the same type.
it Throughout the present paper, our analysis was confined
o tommeeet ; : to the case that the feedback intensityis real. From our
-60 -30 131/2 30 60 ongoing study{14], it is being confirmed that a transition of
€

the same nature persists over some range of complébhe

FIG. 7. Similar to Fig. @) but in two space dimensions. Pa- Nonlinear Langevin equatioil) also seems to remain valid.
rameter values are the same as in the one-dimensional case, i.p/Nlike the case of reak, however, the effective damping
¢,=2.0 andc,= — 2.0, which givesu.=0.10. This value is used in  coefficienty appearing in the Langevin equati¢hl) seems
rescaling of the numerical data. to depend oru, which raises an interesting theoretical prob-
lem to be tackled in the future.

Our preliminary analysi$l14] also suggests that the real-
istic dynamical model for the catalytic CO oxidati$8,6]

Preceding the transition at which the turbulence is comunder experimentally accessible parameter conditions also
pletely suppressed and uniform oscillations set in, a differenéxhibit a similar transition. We strongly hope for its experi-
type of transition characterized by the emergence of collecmental verification.
tive oscillations was shown to exist in the one- and two-
dimensional complex Ginzburg-Landau equations with glo-
bal feedback. The transition is well described
phenomenologically with the noisy Stuart-Landau equation The authors thank H. Nakao for useful discussions. Nu-
governing the mean field. Since the noise there comes frormerical computation of this work was carried out with the
the finite-size effects, the transition becomes infinitely shargComputer Facility at Yukawa Institute for Theoretical Phys-
in the limit of infinite system size. The critical exponents of ics, Kyoto University.

V. CONCLUDING REMARKS
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