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Onset of collective oscillation in chemical turbulence under global feedback

Yoji Kawamura* and Yoshiki Kuramoto
Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan

~Received 30 May 2003; published 16 January 2004!

Preceding the complete suppression of chemical turbulence by means of global feedback, a different uni-
versal type of transition, which is characterized by the emergence of small-amplitude collective oscillation with
strong turbulent background, is shown to occur at much weaker feedback intensity. We illustrate this fact
numerically in combination with a phenomenological argument based on the complex Ginzburg-Landau equa-
tion with global feedback.
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I. INTRODUCTION

Chemical turbulence in oscillatory reaction-diffusion sy
tems can be completely suppressed by means of global f
back@1–3#. Theoretically, this fact was found in the comple
Ginzburg-Landau equation@1,2#, i.e., the normal form of os-
cillatory reaction-diffusion systems near the supercriti
Hopf bifurcation point@4#. Recent experiments on catalyt
CO oxidation on Pt surface demonstrated the same fact
vealing also a variety of wave patterns caused by the eff
of global delayed feedback@3,5#. A theoretical model for this
reaction system reproduced similar behavior@3,6#.

In the present paper, we show that yet another transi
of universal nature can occur at a certain feedback inten
which is much weaker than the critical intensity associa
with the complete suppression of turbulence. The transi
is characterized by the emergence of small-amplitude col
tive oscillation out of the strongly turbulent medium witho
long-range phase coherence. When the collective oscilla
appeared, the system remains strongly turbulent, while
effective damping rate of the uniform mode~i.e., the mean
field! shows a change of sign from positive to negativ
Thus, the transition is interpreted as a consequence of a c
plete cancellation of the effective damping of the mean fi
with the effect of its growth produced by the global fee
back.

In Sec. II, we start with the complex Ginzburg-Land
equation~CGL! with global feedback. Then we derive ph
nomenologically a nonlinear Langevin equation govern
the mean field in the form of a noisy Stuart-Landau equat
~SL!. In order to clarify the nature of the transition of ou
concern, some numerical results for the one- and tw
dimensional CGL will be compared in Secs. III and IV, r
spectively, with analytical results obtained from the no
SL. Concluding remarks will be given in the final section

II. LANGEVIN EQUATION FOR TURBULENT CGL AS AN
EFFECTIVE EQUATION FOR THE MEAN FIELD

One-dimensional complex Ginzburg-Landau equat
with global feedback is given by@1,2#
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] tW5W1~11 ic1!]x
2W2~11 ic2!uWu2W1mW̄, ~1!

W̄~ t !5
1

LE0

L

W~ t,x!dx, ~2!

whereW is a complex field, andL is the system size which is
supposed to be sufficiently large. The intensitym of the glo-
bal feedback is generally a complex number. It is know
however, that a suitable tuning of the delay time in the fe
back in the original system can control the phase of t
parameter@1,2#. For the sake of simplicity, therefore, w
shall confine our present analysis to the case of realm, which
corresponds to the situation where the delay time in the fe
back is fixed at a certain value but the feedback intensit
allowed to vary. A brief comment will be made on the case
complexm in the final section.

We first consider the system without feedback (m50),
i.e., the usual one-dimensional CGL@7,8#. As is well known,
uniform oscillations are linearly unstable and turbulence
velops when the Benjamin-Feir instability condition

11c1c2,0 ~3!

is satisfied. In what follows, we will fix the parametersc1
andc2 asc152.0 andc2522.0 so that the system may sta
well within the turbulent regime. We confirmed that und
this condition no collective oscillation exists, i.e.,W̄ is ran-
domly fluctuating on a ‘‘microscopic’’ scale around the ze
value without perceptible systematic motion. The core of o
argument developed below depends little on the choice
parameter values as far as the condition~3! is well satisfied.

It is known that if the turbulence is sufficiently strong
which is actually the case under the above parameter co
tion, the system exhibits extensive chaos characterized by
property@9#

D f}L, ~4!

whereD f is the Lyapunov dimension of the high-dimension
chaotic attractor describing the turbulence. Extensive ch
implies that the system can be imagined as composed
large number of cells of equal size such that the fluctuati
of some variables associated with the individual cells ab
their mean value are statistically independent from cell
cell. Thus, the fluctuations of a macrovariable, i.e., a varia
©2004 The American Physical Society02-1
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given by a simple sum of cell variables over the entire s
tem, are expected to obey the central limit theorem. In p
ticular, in the absence of long-range order, the character
amplitude ofW̄ will scale like 1/AL for large system size. If
we represent our continuous oscillatory medium with a lo
array ofN oscillators with sufficiently small but fixed sepa
ration between neighboring oscillators, which we actually
in numerical simulations to be described below, we exp
asymptotically the property

W̄5
1

N (
j

Wj5OS 1

AN
D , ~5!

whereWj is the complex amplitude of thej th oscillator in
the array. The simple nature of the extensive variableW̄
mentioned above also implies that its time-correlation fu
tion defined by

C~ t !5^W̄* ~0!W̄~ t !&[ lim
T→`

1

TE0

T

W̄* ~s!W̄~s1t !ds ~6!

obeys a simple exponential decay law for larget, or

C~ t !}e2gt. ~7!

The effective damping coefficientg is a quantity which
could only be determined from the statistical mechanics
turbulent fluctuations which is still far from being esta
lished. The above decay law is confirmed from our numer
simulation. Figure 1 shows numerically calculatedC(t) from
which the exponential law withg.0.22 is confirmed excep
for some initial transient. In this numerical simulation, and
all numerical simulations which follow, we applied an e
plicit Euler integration scheme with a constant time stepDt
<0.01 and a fixed grid sizeDx50.5, adopting periodic
boundary conditions. The system sizeN used ranges from
4000 to 200 000.

We now introduce global feedback and study its effects
the dynamics of the mean field. Let the complex amplitu
be decomposed into Fourier series as

FIG. 1. Numerically observed exponential decay of the tim
correlation function of the mean field in semilogarithmic scal
The effective damping coefficientg, i.e., the mean tangent~the
broken line! of the curve with the initial transient excluded, is es
mated to be 0.22. The system size isN5200 000.
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W̃ke
iqkx, ~8!

whereqk52pk/L (k is an integer!, and the Fourier ampli-
tudes are defined by

W̃k5
1

LE0

L

We2 iqkxdx. ~9!

The uniform amplitudeW̃0, which is identical with the mean
field W̄ by definition, obeys the equation

Ẇ̃05W̃02~11 ic2! (
k1 ,k2

W̃k1
W̃k2

W̃k11k2
* 1mW̃0 . ~10!

One may wish to obtain an equation for the mean field i
closed form, which would be a stochastic equation of
nonlinear Langevin type. However, deriving such an eq
tion would be a formidable statistical mechanical proble
so that in the present paper we will content ourselves
simply assuming phenomenologically that the effective
ponential decay of the mean field as is seen in Fig. 1 i
result of renormalization of the linear coefficient in Eq.~10!
by the nonlinear mode-coupling term. If we can neglect no
Markovian effects, the result of such renormalization w
generally take the form of a nonlinear Langevin equation

Ẇ̄5@~m2g!1 iv#W̄1N~W̄!1 f ~ t !, ~11!

where a nonlinear termN(W̄) with unknown specific form
has been included, andf (t) represents random force wit
vanishing mean.

The analysis of Eq.~11! developed in the following sec
tion is based on the simplifying assumption thatf (t) is white
Gaussian with the only nonvanishing second moment gi
by

^ f ~ t ! f * ~ t8!&54Gd~ t2t8!. ~12!

The Gaussian nature of the random force seems to hold
to the aforementioned extensive nature ofW̄. The white-
noise assumption also seems valid because we are pa
larly concerned with the situation near the transition po
where the characteristic time scale ofW̄ becomes very long.
We should also note that the damping coefficientg has been
assumed to be unchanged when the global feedback is in
duced, which is actually the property confirmed by our n
merical experiments at least for realm. Our final remark is
that in the above argument about Eq.~11! we did not explic-
itly refer to spatial dimension. Therefore, there seems to
no reason why Eq.~11! should not be applied to systems
two or higher dimensions.

Equation~11! tells that a transition occurs when the glob
feedback intensitym becomes equal to the effective dampin
coefficientg of the mean filed. We denote this value ofm as
mc , or

mc5g. ~13!

-
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Figure 2 shows numerically obtained long-time averages
the mean field amplitude, denoted as^r &, as a function of the
feedback intensitym over a wide range ofm. Although not
very clear from these data, there is an indication of transit
from vanishing to nonvanishinĝr & at some value ofm much
smaller than those giving rise to a hysteresis between tu
lent and nonturbulent uniform states. In fact, the wh
analysis in the rest of this paper is devoted to finding
unambiguous evidence for the existence of a transi
through a closer investigation of small-m region.

In Fig. 3, two phase portraits in the complex amplitu
plane each obtained form50.1 ~weaker feedback! and m
50.3 ~stronger feedback! are contrasted with each othe
While the distribution of the representative points of the
cal oscillators looks almost isotropic for the case ofm
50.1, implying the absence of collective oscillations, su
symmetry is obviously lost whenm50.3, implying the exis-
tence of collective oscillations. Qualitative difference b
tween the two situations is further confirmed from Fig.
where a trajectory of the mean field over a long time at e
value ofm is displayed. It is clear that when the feedback
weak the mean field is nonoscillatory, simply fluctuati
~presumably due to the finite-size effects described abo!
around the origin, whereas for stronger feedback the s
quantity clearly exhibits a closed orbit with some amplitu
fluctuation again due to the finite-size effects. Thus, if th
is a transition somewhere between thesem values, it is pre-
sumably characterized by a noisy Hopf bifurcation.

The nonlinear Langevin equation~11! actually predicts
the occurrence of a noisy Hopf bifurcation. From the sy

FIG. 2. Long-time averages of the mean field amplitude^r & as a
function of the feedback intensitym over a wide range ofm. The
dotted line corresponds to uniform oscillations. The system siz
N510 000.

FIG. 3. Phase portraits form50.1 ~a! andm50.3 ~b! at a given
time. The system size isN540 000.
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metry of our system and the smallness in amplitude of
collective oscillation near its onset, the nonlinear effe
N(W̄) in Eq. ~11! will be dominated by a cubic term. The
the mean field obeys a noisy Stuart-Landau equation

Ẇ̄5@~m2mc!1 iv#W̄2~h1 ia!uW̄u2W̄1 f ~ t !, ~14!

where the coefficientsmc , v, h, anda are real and depend
generally onc1 and c2. Since the above equation can b
handled analytically, it would be interesting to compare so
of the results from its analysis with our direct numeric
simulations on Eq.~1! and its two-dimensional extension
which are the subjects of Secs. III and IV, respectively.

III. PREDICTED CRITICAL BEHAVIOR AND
COMPARISON WITH NUMERICAL RESULTS

The nonlinear Langevin equation~14! is equivalent with
the Fokker-Planck equation of the following form@10,11#:

]

]t
P~r ,f,t !5

1

r

]

]r H @2~m2mc!r
21hr 4#P1Gr

]

]r
PJ

1F ~2v1ar 2!
]

]f
P1

G

r 2

]2

]f2
PG . ~15!

HereP(r ,f,t) is the probability density for the amplituder
and the phasef of the mean field at timet. The above
equation admits a stationary solution independent off given
by

Pst~r !5expF2
h

4G S r 22
m2mc

h D 2G . ~16!

Various moments ofr defined by

^r n&5

E
0

`

r nPst~r !rdr

E
0

`

Pst~r !rdr

, ~17!

is

FIG. 4. Trajectories of the mean field in the complex plane
m50.1 andm50.3. The mean field is fluctuating around the orig
when m50.1, while it forms a closed orbit with small amplitud
fluctuations whenm50.3. The fluctuations come from the finite
ness of the system size. The system size isN540 000.
2-3
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and those of the fluctuationdr[r 2^r & can be calculated
@12#. In particular, in the limit of weak random force, th
mean field amplitudêr & near the transition is found to de
pend onm2mc as

^r &5H A~m2mc!
1/2 ~m.mc!

0 ~m,mc!,
~18!

whereA is a constant. Similarly, the mean field fluctuatio
^(dr )2& is given by

^~dr !2&}um2mcu21, ~19!

which holds form:mc . It is clear that the critical exponent
associated witĥr & and^(dr )2& obey the classical law or th
mean field theory, reflecting the fact that the transition
caused by the applied mean field and not by the developm
of local order to a macroscopic scale. Still the transition is
some sense statistical in nature unlike bifurcations in de
ministic dynamical systems. This is because the loss of lo
range order is solely due to turbulent fluctuations, so tha
full theoretical understanding of the transition phenomen
would be impossible without statistical mechanics of che
cal turbulence.

Long-time averages ofr and (dr )2 were obtained as a
function of the feedback intensity from numerical simulati
of Eqs. ~1! and ~2! with N5200 000, and the results ar
shown in Figs. 5~a! and 5~b!, respectively. By assuming tha
the long-time averages are identical with ensemble avera
these numerical data were fitted with the theoretical cur
given by Eqs.~18! and~19!, respectively, where a scale fa
tor is used as the only adjustable parameter. Note thatmc is
not an adjustable parameter, but is a constant given by
~13!.

In obtaining Eq.~18! for the mean field amplitude, we
considered the limit of weak random force. Let our argum
be generalized to include the dependence of^r & on the noise
intensity as well as onm2mc . Because the origin of the
random force driving the mean field is the finiteness of
system size, the noise intensity should be inversely pro
tional to the system size, or

G5
D

N
, ~20!

FIG. 5. ^r &2 vs m ~a!, N21^(dr )2&21 vs m ~b!. The open circles
and the solid lines are the numerical data and the theoretical cu
respectively. In each of~a! and~b!, a suitable scale factor is used a
an adjustable parameter to achieve a good fitting between the th
and numerical experiments. The system size isN5200 000.
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whereD is a constant independent ofN. One may thus write
the stationary distribution in the form

Pst~r !5expF2
Nh

4D S r 22
«

h D 2G , ~21!

where«5m2mc . Applying the finite-size scaling law devel
oped in Ref.@13# to the average amplitude of the mean fie
we obtain a scaling form

^r &5N21/4F~«N1/2!, ~22!

whereF is a function~called the scaling function! depending
on N and« only through«N1/2. Equation~22! is a generali-
zation of Eq.~18!. Numerically calculated̂r & for various«
and N confirms this scaling law. Figure 6~a! shows the de-
pendence of the long-time average of the mean field am
tude on feedback intensity for some different values ofN. As
is seen from Fig. 6~b!, all these data come to lie on an ide
tical universal curve after the rescalings of^r & and« by N1/4

andN1/2, respectively. In this way, the finite-size scaling la
~22! is confirmed, providing unmistakable evidence for
phase transition.

IV. TWO-DIMENSIONAL CASE

The one-dimensional reaction-diffusion systems which
have numerically studied in Secs. II and III are not ve
realistic. Especially, surface chemical reactions, such as c
lytic CO oxidation on Pt, occur in two dimensions. As me
tioned in the foregoing sections, the transition of our conc
is the mean field type, so that the nature of the transition
expected to be the same as that in one-dimensional syst
We carried out numerical simulations on the tw
dimensional complex Ginzburg-Landau equation with glo
feedback, and obtained a clear indication of transition,
though the corresponding value ofmc is considerably smaller
than that of the one-dimensional case under the same pa
eter condition. Figure 7 summarizes numerical results
various« andN, exhibited in a similar manner to Fig. 6~b!,
i.e., in the form of̂ r &N1/4 vs «N1/2 for different values ofN.
These data form almost an identical curve again, which
take as evidence for a transition similar to that in on
dimensional systems.

es,

ory

FIG. 6. ^r & vs m for some different values ofN ~a!. Rescaling of
the data in~a! according to the finite-size scaling given by Eq.~22!
produces a universal curve independent ofN ~b!.
2-4
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V. CONCLUDING REMARKS

Preceding the transition at which the turbulence is co
pletely suppressed and uniform oscillations set in, a differ
type of transition characterized by the emergence of col
tive oscillations was shown to exist in the one- and tw
dimensional complex Ginzburg-Landau equations with g
bal feedback. The transition is well describe
phenomenologically with the noisy Stuart-Landau equat
governing the mean field. Since the noise there comes f
the finite-size effects, the transition becomes infinitely sh
in the limit of infinite system size. The critical exponents

FIG. 7. Similar to Fig. 6~b! but in two space dimensions. Pa
rameter values are the same as in the one-dimensional case
c152.0 andc2522.0, which givesmc.0.10. This value is used in
rescaling of the numerical data.
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this transition obey the mean field theory because the or
of cooperativity is nothing but the mean field produced
the global feedback. This also gives the reason why spa
dimension one is sufficient for giving rise to the transitio
We also confirmed that the two-dimensional compl
Ginzburg-Landau equation with global feedback which
more realistic also exhibits a transition of the same type.

Throughout the present paper, our analysis was confi
to the case that the feedback intensitym is real. From our
ongoing study@14#, it is being confirmed that a transition o
the same nature persists over some range of complexm. The
nonlinear Langevin equation~11! also seems to remain valid
Unlike the case of realm, however, the effective dampin
coefficientg appearing in the Langevin equation~11! seems
to depend onm, which raises an interesting theoretical pro
lem to be tackled in the future.

Our preliminary analysis@14# also suggests that the rea
istic dynamical model for the catalytic CO oxidation@3,6#
under experimentally accessible parameter conditions
exhibit a similar transition. We strongly hope for its expe
mental verification.
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